Problem 3.11

Find the momentum-space wave function, $\Phi(p, t)$, for a particle in the ground state of the harmonic oscillator. What is the probability (to two significant digits) that a measurement of p on a particle in this state would yield a value outside the classical range (for the same energy)? Hint: Look in a math table under "Normal Distribution" or "Error Function" for the numerical part - or use Mathematica.

Solution

The general formulas for the Fourier transform of a function $f(x)$ and its corresponding inverse Fourier transform are as follows.

$$
\left\{\begin{array}{l}
F(k)=\sqrt{\frac{|b|}{(2 \pi)^{1-a}}} \int_{-\infty}^{\infty} e^{i b k x} f(x) d x \\
f(x)=\sqrt{\frac{|b|}{(2 \pi)^{1+a}}} \int_{-\infty}^{\infty} e^{-i b k x} F(k) d k
\end{array}\right.
$$

The Fourier transform can be used to solve linear partial differential equations over the whole line. Any choice for a and b is acceptable, and how one chooses to define the Fourier transform really comes down to personal preference. In Chapter 2, for example, the Schrödinger equation was solved using $a=0$ and $b=-1$.

$$
\left\{\begin{array}{rl}
\mathcal{F}\{\Psi(x, t)\} & =\tilde{\Psi}(k, t)
\end{array}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \Psi(x, t) d x\right]\left\{\begin{array}{l}
\mathcal{F}^{-1}\{\tilde{\Psi}(k, t)\}
\end{array}=\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \tilde{\Psi}(k, t) d k\right.
$$

One choice for a and b is special in quantum mechanics, though: $a=0$ and $b=-1 / \hbar$.

$$
\left\{\begin{array}{rl}
\mathscr{F}\{\Psi(x, t)\} & =\Phi(p, t)
\end{array}=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar} \Psi(x, t) d x .\right.
$$

$\Psi(x, t)$ is the position-space wave function because $|\Psi(x, t)|^{2}$ represents the probability distribution for the particle's position. On the other hand, $\Phi(p, t)$ is the momentum-space wave function because $|\Phi(p, t)|^{2}$ represents the probability distribution for the particle's momentum. These formulas are a result of solving the eigenvalue problem for the momentum operator.

$$
\begin{gathered}
\hat{p} f(x)=p f(x) \\
-i \hbar \frac{d}{d x} f(x)=p f(x) \\
\frac{d f}{d x}=\frac{i p}{\hbar} f(x) \\
f(x)=A e^{i p x / \hbar}
\end{gathered}
$$

This is a non-normalizable function, so the spectrum is continuous, meaning the continuous Dirac-analogs of Equations 3.10 and 3.11 on page 93 apply. Since \hat{p} is a hermitian operator, the eigenfunctions associated with the real, distinct eigenvalues are orthogonal.

$$
\begin{aligned}
\left\langle f^{\prime} \mid f\right\rangle=\int_{-\infty}^{\infty}\left(A e^{i p^{\prime} x / \hbar}\right)^{*}\left(A e^{i p x / \hbar}\right) d x & =\int_{-\infty}^{\infty}\left(A^{*} e^{-i p^{\prime} x / \hbar}\right)\left(A e^{i p x / \hbar}\right) d x \\
& =|A|^{2} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x / \hbar} d x \\
& =A^{2}\left[2 \pi \delta\left(\frac{p-p^{\prime}}{\hbar}\right)\right] \\
& =A^{2}\left[2 \pi|-\hbar| \delta\left(p^{\prime}-p\right)\right] \\
& =2 \pi \hbar A^{2} \delta\left(p^{\prime}-p\right)
\end{aligned}
$$

Determine A by requiring the magnitude of the delta function to be 1 .

$$
2 \pi \hbar A^{2}=1 \quad \rightarrow \quad A=\frac{1}{\sqrt{2 \pi \hbar}}
$$

Consequently,

$$
f(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

\hat{p} is a hermitian operator, so any function in position-space, including the one we're most interested in, $\Psi(x, t)$, can be expressed as a linear combination of its eigenfunctions.

$$
\Psi(x, t)=\int_{-\infty}^{\infty} B(p, t)\left(\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}\right) d p
$$

By comparing this to the general formulas, we see that this is a very special inverse Fourier transform, one where $a=0$ and $b=-1 / \hbar$. The position-space wave function for a particle in the ground state of the harmonic oscillator potential is (see Problem 2.10)

$$
\Psi(x, t)=\psi_{0}(x) e^{-i E_{0} t / \hbar}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right) e^{-i \omega t / 2} .
$$

Take the Fourier transform of $\Psi(x, t)$ in order to get the momentum-space wave function.

$$
\begin{aligned}
\Phi(p, t) & =\mathscr{F}\{\Psi(x, t)\} \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar} \Psi(x, t) d x \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-i p x / \hbar}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right) e^{-i \omega t / 2} d x \\
& =\frac{e^{-i \omega t / 2}}{\sqrt{2 \pi \hbar}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \int_{-\infty}^{\infty} \exp \left(-\frac{m \omega}{2 \hbar} x^{2}-\frac{i p}{\hbar} x\right) d x
\end{aligned}
$$

Complete the square in the exponent.

$$
\begin{aligned}
\Phi(p, t) & =\frac{e^{-i \omega t / 2}}{\sqrt{2 \pi \hbar}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \int_{-\infty}^{\infty} \exp \left[-\frac{m \omega}{2 \hbar}\left(x^{2}+\frac{2 i p}{m \omega} x\right)\right] d x \\
& =\frac{e^{-i \omega t / 2}}{\sqrt{2 \pi \hbar}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \int_{-\infty}^{\infty} \exp \left[-\frac{m \omega}{2 \hbar}\left(x^{2}+\frac{2 i p}{m \omega} x-\frac{p^{2}}{m^{2} \omega^{2}}\right)\right] \exp \left[-\frac{m \omega}{2 \hbar}\left(\frac{p^{2}}{m^{2} \omega^{2}}\right)\right] d x \\
& =\frac{e^{-i \omega t / 2}}{\sqrt{2 \pi \hbar}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right) \int_{-\infty}^{\infty} \exp \left[-\frac{m \omega}{2 \hbar}\left(x+\frac{i p}{m \omega}\right)^{2}\right] d x
\end{aligned}
$$

Make the following substitution.

$$
\begin{aligned}
u & =\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right) \\
d u & =\sqrt{\frac{m \omega}{2 \hbar}} d x \quad \rightarrow \quad d x=\sqrt{\frac{2 \hbar}{m \omega}} d u
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\Phi(p, t)= & \frac{e^{-i \omega t / 2}}{\sqrt{2 \pi \hbar}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right) \int_{-\infty}^{\infty} e^{-u^{2}} \sqrt{\frac{2 \hbar}{m \omega}} d u \\
= & \frac{e^{-i \omega t / 2}}{\sqrt{\pi}} \frac{1}{(\pi \hbar m \omega)^{1 / 4}} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right) \underbrace{\int_{-\infty}^{\infty} e^{-u^{2}} d u}_{=\sqrt{\pi}} \\
& \Phi(p, t)=\frac{e^{-i \omega t / 2}}{(\pi \hbar m \omega)^{1 / 4}} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right) \cdot
\end{aligned}
$$

A classical particle with mass m and energy $E \geq 0$ has momentum

$$
\begin{gathered}
E \geq \frac{p^{2}}{2 m} \\
p^{2} \leq 2 m E \\
|p| \leq \sqrt{2 m E} \\
-\sqrt{2 m E} \leq p \leq \sqrt{2 m E} .
\end{gathered}
$$

Assuming it has the energy of the harmonic-oscillator ground state, $E=E_{0}=\hbar \omega / 2$,

$$
-\sqrt{\hbar m \omega} \leq p \leq \sqrt{\hbar m \omega} .
$$

The probability of measuring p outside of this range is

$$
P=\int_{-\infty}^{-\sqrt{\hbar m \omega}}|\Phi(p, t)|^{2} d p+\int_{\sqrt{\hbar m \omega}}^{\infty}|\Phi(p, t)|^{2} d p
$$

because $|\Phi(p, t)|^{2}$ is the probability distribution for the particle's momentum.

$$
\begin{aligned}
P & =\int_{-\infty}^{-\sqrt{\hbar m \omega}}\left|\frac{e^{-i \omega t / 2}}{(\pi \hbar m \omega)^{1 / 4}} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right)\right|^{2} d p+\int_{\sqrt{\hbar m \omega}}^{\infty}\left|\frac{e^{-i \omega t / 2}}{(\pi \hbar m \omega)^{1 / 4}} \exp \left(-\frac{p^{2}}{2 \hbar m \omega}\right)\right|^{2} d p \\
& =\int_{-\infty}^{-\sqrt{\hbar m \omega}} \frac{1}{\sqrt{\pi \hbar m \omega}} \exp \left(-\frac{p^{2}}{\hbar m \omega}\right) d p+\int_{\sqrt{\hbar m \omega}}^{\infty} \frac{1}{\sqrt{\pi \hbar m \omega}} \exp \left(-\frac{p^{2}}{\hbar m \omega}\right) d p \\
& =\frac{1}{\sqrt{\pi \hbar m \omega}}\left[\int_{-\infty}^{-\sqrt{\hbar m \omega}} \exp \left(-\frac{p^{2}}{\hbar m \omega}\right) d p+\int_{\sqrt{\hbar m \omega}}^{\infty} \exp \left(-\frac{p^{2}}{\hbar m \omega}\right) d p\right]
\end{aligned}
$$

Make the following substitutions.

$$
\begin{array}{rl}
v=-\frac{p}{\sqrt{\hbar m \omega}} & w=\frac{p}{\sqrt{\hbar m \omega}} \\
d v=-\frac{d p}{\sqrt{\hbar m \omega}} \rightarrow \quad d p=-\sqrt{\hbar m \omega} d v & d w=\frac{d p}{\sqrt{\hbar m \omega}} \quad \rightarrow \quad d p=\sqrt{\hbar m \omega} d w
\end{array}
$$

As a result,

$$
\begin{aligned}
P & =\frac{1}{\sqrt{\pi \hbar m \omega}}\left[\int_{\infty}^{1} e^{-v^{2}}(-\sqrt{\hbar m \omega} d v)+\int_{1}^{\infty} e^{-w^{2}}(\sqrt{\hbar m \omega} d w)\right] \\
& =\frac{1}{\sqrt{\pi}}\left(\int_{1}^{\infty} e^{-v^{2}} d v+\int_{1}^{\infty} e^{-w^{2}} d w\right) \\
& =\frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-v^{2}} d v \\
& \approx \frac{2}{\sqrt{\pi}}(0.139403) \\
& \approx 0.16
\end{aligned}
$$

