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Problem 3.11

Find the momentum-space wave function, ®(p,t), for a particle in the ground state of the
harmonic oscillator. What is the probability (to two significant digits) that a measurement of p
on a particle in this state would yield a value outside the classical range (for the same energy)?
Hint: Look in a math table under “Normal Distribution” or “Error Function” for the numerical
part—or use Mathematica.

Solution

The general formulas for the Fourier transform of a function f(z) and its corresponding inverse

Fourier transform are as follows.
k) = /(2;)’1% / ek (1) dx
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The Fourier transform can be used to solve linear partial differential equations over the whole
line. Any choice for a and b is acceptable, and how one chooses to define the Fourier transform
really comes down to personal preference. In Chapter 2, for example, the Schrédinger equation
was solved using a = 0 and b = —1.

F{U(z,t)} = U(k,t) e R (g, t) da
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One choice for a and b is special in quantum mechanics, though: a =0 and b = —1/A.

F{U(x,t)} = D(p, t) e~ Py (1, t) da:

1
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FHo(p,t)} = V(a,t) = eI (p, 1) dp

F

U(z,t) is the position-space wave function because |¥(z, t)]2 represents the probability
distribution for the particle’s position. On the other hand, ®(p,t) is the momentum-space wave
function because |®(p,t)|? represents the probability distribution for the particle’s momentum.
These formulas are a result of solving the eigenvalue problem for the momentum operator.

pf(x) = pf(x)
i f(2) = pf(2)
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This is a non-normalizable function, so the spectrum is continuous, meaning the continuous
Dirac-analogs of Equations 3.10 and 3.11 on page 93 apply. Since p is a hermitian operator, the
eigenfunctions associated with the real, distinct eigenvalues are orthogonal.
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Determine A by requiring the magnitude of the delta function to be 1.
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Consequently,

f(.%') _ \/;Tr*heipx/ﬁ.

P is a hermitian operator, so any function in position-space, including the one we’re most
interested in, ¥(x,t), can be expressed as a linear combination of its eigenfunctions.

U(z,t) = / h B(p, 1) < eim/ﬁ) dp
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By comparing this to the general formulas, we see that this is a very special inverse Fourier
transform, one where a = 0 and b = —1/h. The position-space wave function for a particle in the
ground state of the harmonic oscillator potential is (see Problem 2.10)

Btk mw 1/4 mw i
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Take the Fourier transform of W¥(x,t) in order to get the momentum-space wave function.
O(p,t) = F{¥(z,1)}

1
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Complete the square in the exponent.
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Make the following substitution.
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As a result,
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®(p,t) = 6eXp( b ) :
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A classical particle with mass m and energy £ > 0 has momentum

p? < 2mE
Ip| < V2mE
—V2mE < p < V2mFE.

Assuming it has the energy of the harmonic-oscillator ground state, F = Ey = hw/2,

—Vhmw < p < Vhimw.

The probability of measuring p outside of this range is

—vV hmw 0
P= / B(p, ) dp + / B(p, 1) dp
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because |®(p, )| is the probability distribution for the particle’s momentum.
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Make the following substitutions.

. p _ b
v = — w =
hAmw hmw
dp dp
dv=— —  dp=—Vhmwdv dw = —  dp = Vhmwdw
hAmw hAmw

As a result,
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~ 0.16.
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